7 research outputs found

    Arquitectura de Agente Emocional para Aplicaciones de Control en Tiempo Real

    Full text link
    Tesis por compendioArtificial agents are a technology suitable for solving problems. Agents can perform tasks that their users cannot and/or do not want to accomplish. Agents are systems with a significant degree of autonomy. Even being autonomous in their behavior, they assume the users' goals as their own goals, because there is an agreement between the agent and the user. It is a powerful technology, and the research on this field is very active. As agents are complex systems, it is necessary to define development frameworks that facilitate their conception, design and construction. We name these frameworks, artificial agent architectures. Each architecture is characterized by a few key ideas related to the way the agent represents its knowledge about the world, and how it organizes its behavior. We call these key ideas a paradigm. In this work, an artificial agent's architecture is proposed. In this architecture the organization of the behavior is emotionally driven. It is a bio-inspired architecture. The emotion in this case, however, is a very simplified version of the emotional process in the natural emotional agents. Although other agent architectures based on emotions have been proposed, they have been usually focused on the social skills of the agents, normally to interact with people. This situation could have been caused due to the knowledge we had about the importance of the emotion in the social relations between human beings, when people recognize the internal state of the others, or show their own internal states, and the emotional communication influences their behavior. However, the fundamental role of the emotion in a wide range of cognitive processes is being recognized because of the recent research in psychology and neuroscience. Emotions seem to make an essential contribution in processes such as perception, learning, memory, decision-making and problem solving. Deliberative rational thoughts themselves would be directed by emotions. Given this new view about the emotion, in this thesis, we have investigated the role of the emotions in the cognitive processes of an artificial agent, related them to the general decision making problem, not just the social interaction problem. As an example, in the application considered as a case study in this project, the emotional agent controls a mobile robot platform, in which there is not an important behavior layer of social interaction, and the emotional processes primarily motivate behaviors related to problems in a physical environment, with objects, parts, or areas of operation and navigation. In this thesis, we have defined a specification for the proposed emotional agent architecture, and have discussed the implementation aspects of it.Los agentes artificiales constituyen una tecnología de apoyo para la resolución de problemas. Un agente es un sistema con un grado significativo de autonomía, lo que le permite descargar a su usuario de tareas que éste no puede o no quiere realizar. Aun siendo autónomo en sus comportamientos, el agente asume los objetivos de su usuario como propios, ya que existe un contrato entre el agente y su representado. Se trata de una tecnología potente y que interesa desarrollar, con lo que el área de investigación en agentes está abierta y hay un esfuerzo continuo para construir agentes con cada vez mejores prestaciones. Siendo los agentes sistemas complejos, resulta necesario definir marcos de desarrollo que permitan concebirlos, diseñarlos y construirlos. Conocemos a estos marcos como arquitecturas de agentes artificiales. Cada una de estas arquitecturas se caracteriza por ciertas ideas clave, relacionadas con la forma en que el agente representa su conocimiento y organiza su comportamiento, en lo que se denomina un paradigma. Sin duda, queda mucho recorrido en este campo - ampliando por ejemplo las áreas de aplicación, o permitiendo funcionalidades adicionales, o aumentando la eficiencia de los procesos implicados, tanto en lo relativo al comportamiento del agente cuando éste está en explotación, como durante el propio proceso de construcción y validación del sistema. En este trabajo se propone una arquitectura de agente artificial en el que la organización del comportamiento está dirigida por un proceso emocional. Se trata de una arquitectura bio-inspirada. La emoción en este caso, sin embargo, es una versión muy simplificada del proceso emocional en los agentes emocionales naturales. Aunque se han definido otras arquitecturas de agentes artificiales basadas en emociones, han sido enfocadas, sobre todo, a construir agentes con habilidades sociales; normalmente para interactuar con las personas. Posiblemente esto ha sido debido a que ya hace mucho que se aceptaba la importancia de la emoción en las relaciones sociales entre los seres humanos; cuando éstos interpretan el estado interno de los demás o expresan su propio estado, alterando con ello sus comportamientos. Sin embargo, el papel fundamental de la emoción en un amplio espectro de procesos cognitivos está siendo reconocido a raíz de la investigación en psicología y neurología. Las emociones parecen contribuir de forma esencial en procesos como la percepción, el aprendizaje, la memoria, la toma de decisiones o la resolución de problemas. El propio pensamiento deliberativo racional estaría dirigido por las emociones. Teniendo en cuenta esta nueva visión de las emociones, en este trabajo se ha investigado el rol de la emoción en los procesos cognitivos de un agente artificial relacionados con la toma de decisiones en general, no sólo en lo relativo a los procesos de interrelación social. Así por ejemplo, en la aplicación considerada como caso de estudio de este trabajo, el agente emocional controla una plataforma de robot móvil de servicio, en la que no hay una capa de comportamiento social importante, y donde los procesos emocionales motivan fundamentalmente los comportamientos relacionados con problemas surgidos en un entorno físico, con objetos, piezas, o espacios de operación y navegación. En esta tesis se define una especificación para la arquitectura de agente emocional artificial propuesta y se discute aspectos de implementación de dicha arquitectura.Els agents artificials constitueixen una tecnologia de suport per a la resolució de problemes. Un agent és un sistema amb un grau significatiu d'autonomia, el que li permet descarregar al seu usuari de tasques que aquest no pot o no vol fer. Fins i tot sent autònom en els seus comportaments, l'agent assumeix els objectius del seu usuari com a propis, ja que hi ha un contracte entre l'agent i el seu representat. Es tracta d'una tecnologia potent i que interessa desenvolupar, de manera que l'àrea de recerca en agents està oberta i hi ha un esforç continu per construir agents amb cada vegada millors prestacions. Sent els agents sistemes complexos, resulta necessari definir marcs de desenvolupament que puguen permetre concebre'ls, dissenyar-los i construir-los. Coneixem a aquests marcs com arquitectures d'agents artificials. Cadascuna d'aquestes arquitectures es caracteritza per certes idees clau, relacionades amb la forma en què l'agent representa el seu coneixement i organitza el seu comportament, en el que s'anomena un paradigma. Sens dubte, queda molt de recorregut en aquest camp - ampliant les àrees d'aplicació, o permetent funcionalitats addicionals, o augmentant l'eficiència dels processos implicats, tant pel que fa al comportament de l'agent quan aquest està en explotació, com durant el mateix procés de construcció i validació del sistema. En aquest treball es proposa una arquitectura d'agent artificial en què l'organització del comportament està dirigida per un procés emocional. Es tracta d'una arquitectura bio-inspirada. L'emoció en aquest cas, però, és una versió molt simplificada del procés emocional en els agents emocionals naturals. Tot i que s'han definit altres arquitectures d'agents artificials basades en emocions, han estat enfocades, sobretot, a construir agents amb habilitats socials; normalment per interactuar amb les persones. Possiblement això ha segut perquè ja fa molt que s'acceptava la importància de l'emoció en les relacions socials entre els éssers humans; quan aquests interpreten l'estat intern dels altres o expressen el seu propi estat, alterant amb això els seus comportaments. No obstant això, el paper fonamental de l'emoció en un ampli espectre de processos cognitius està sent reconegut arran de la investigació en psicologia i neurologia. Les emocions semblen contribuir de forma essencial en processos com la percepció, l'aprenentatge, la memòria, la presa de decisions o la resolució de problemes. El mateix pensament deliberatiu racional estaria dirigit per les emocions. Tenint en compte aquesta nova visió de les emocions, en aquest treball s'ha investigat el paper de l'emoció en els processos cognitius d'un agent artificial relacionats amb la presa de decisions en general, no només pel que fa als processos d'interrelació social. Així per exemple, en l'aplicació considerada com a cas d'estudi d'aquest treball, l'agent emocional controla una plataforma de robot mòbil de servei, en què no hi ha una capa de comportament social important, i on els processos emocionals motiven fonamentalment els comportaments relacionats amb problemes sorgits en un entorn físic, amb objectes, peces, o espais d'operació i navegació. En aquesta tesi es defineix una especificació per a l'arquitectura d'agent emocional artificial proposta i es discuteixen aspectes d'implementació de la arquitectura.Domínguez Montagud, CP. (2017). Arquitectura de Agente Emocional para Aplicaciones de Control en Tiempo Real [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86223TESISCompendi

    Human-computer cooperation platform for developing real-time robotic applications

    Full text link
    [EN] This paper presents a human-computer cooperation platform, which permits the coordination between the user and the tool to improve the development of real-time control applications (e.g., mobile robots). These applications have functional (robot objectives) and temporal requirements to accomplish (deadlines guarantee of tasks). The simulation tool has been designed in order to permit the testing and validation of these two requirements. To this end, the tool is composed of two independent simulators interconnected through a shared memory: the robot simulator (functional level) and the real-time task scheduler simulator (task execution level). Robotic applications can be defined with the robot simulator while the real-time scheduler simulator permits to analyze the schedulability of the robotic tasks. The real-time task simulator incorporates a flexible task model where the task temporal parameters (e.g., computation time) adapt to the requirements of the application (e.g., number of objects in scenes); thus, the use of the CPU is not overestimated. A key issue of the framework is the human-computer interface, which allows the monitoring of different parameters of the application: robot objectives, task schedule, robot speed, computation time, CPU utilization, deadline misses. The usefulness of the simulation tool is shown through different robotic navigation experiments. Finally, the simulation tool has been used to evaluate the proposed flexible model of tasks compared to a traditional fixed temporal parameters task model. Results show that the robot fulfills the objectives earlier, about 32% on average, and consumes on average about 15% less CPU to accomplish the objectives.Domínguez Montagud, CP.; Martínez-Rubio, J.; Busquets Mataix, JV.; Hassan Mohamed, H. (2019). Human-computer cooperation platform for developing real-time robotic applications. The Journal of Supercomputing. 75(4):1849-1868. https://doi.org/10.1007/s11227-018-2343-4S18491868754Dominguez C, Hassan H, Crespo A (2007) Real-time embedded architecture for pervasive robots. In: The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007), pp 531–536Audsley NC, Burns A, Davis RI, Tindell KW, Wellings AJ (1995) Fixed priority pre-emptive scheduling: an historical perspective. Real Time Syst 8(2–3):173–198Stankovic JA, Lee I, Mok A, Rajkumar R (2005) Opportunities and obligations for physical computing systems. Computer 38(11):23–31Zhen Z, Qixin C, Lo C, Lei Z (2009) A CORBA-based simulation and control framework for mobile robots. Robotica 27(3):459Ferretti G, Magnani G, Porrati P, Rizzi G, Rocco P, Rusconi A (2008) Real-time simulation of a space robotic arm. In: IROSQadi A, Goddard S, Huang J, Farritor S (2005) A performance and schedulability analysis of an autonomous mobile robot. In: 17th Euromicro Conference on Real-Time Systems (ECRTS’05), pp 239–248Goud GR, Sharma N, Ramamritham K, Malewar S (2006) Efficient real-time support for automotive applications: a case study. In: 12th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’06), pp 335–341Pedreiras P, Luis A (2003) The flexible time-triggered (FTT) paradigm: an approach to QoS management in distributed real-time systems. In: Proceedings International Parallel and Distributed Processing Symposium, p 9Li H, Sweeney J, Ramamritham K, Grupen R, Shenoy P (2003) Real-time support for mobile robotics. In: The 9th IEEE Real-Time and Embedded Technology and Applications Symposium. Proceedings, pp 10–18Chetto H, Chetto M (1989) Some results of the earliest deadline scheduling algorithm. IEEE Trans Softw Eng 15(10):1261–1269Liu R, Zhang X (2017) Systems of natural-language-facilitated human-robot cooperation: a review. arXiv:1701.08269v2Tsarouchi P, Makris S, Chryssolouris G (2016) Human–robot interaction review and challenges on task planning and programming. Int J Comput Integr Manuf 29(8):916–931Moniz A (2013) Organizational concepts and interaction between humans and robots in industrial environments. In: IEEE-RAS-IARP Joint Workshop on Technical Challenges for Dependable Robots in Human Environment, TokyoMayer MP, Odenthal B, Faber M, Winkelholz C, Schlick CM (2014) Cognitive engineering of automated assembly processes. Hum Factors Ergon Manuf Serv Ind 24(3):348–368Agostini A, Torras C, Wörgötter F (2011) Integrating task planning and interactive learning for robots to work in human environments. In: IJCAIKwon W, Suh I (2014) Planning of proactive behaviors for human–robot cooperative tasks under uncertainty. Knowl Based Syst 72:81–95Chen F, Sekiyama K, Sasaki H, Huang J, Sun B, Fukuda T (2011) Assembly strategy modeling and selection for human and robot coordinated cell assembly. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 4670–4675Gombolay M, Wilcox R, Diaz A, Yu F (2013) Towards successful coordination of human and robotic work using automated scheduling tools: an initial pilot study. In: Proceedings of Robotics: Science and Systems, Human–Robot Collaboration WorkshopGombolay MC, Gutierrez RA, Clarke SG, Sturla GF, Shah JA (2015) Decision-making authority, team efficiency and human worker satisfaction in mixed human–robot teams. Auton Robots 39(3):293–312Frontoni E, Mancini A, Caponetti F, Zingaretti P (2006) A framework for simulations and tests of mobile robotics tasks. In: 2006 14th Mediterranean Conference on Control and Automation, pp 1–6I. Embarcadero Technologies, C++ Builder 10.2. https://www.embarcadero.com

    m-IC: a Mobile Device based Multimedia Learning Methodology for Industrial Computing

    Full text link
    [EN] To ensure the success of mobile learning, the use of an appropriate methodology to design and implement mobile device based on educational tools is a key issue. Industrial Computing (IC) subject is a third year compulsory subject of Industrial Electronic and Automation Engineering degree, which instructs students in the design and validation of Industrial Computing Systems (ICS) to control medium size industrial processes. IC is organized through a Problem Based Learning (PBL) methodology to carry out the implementation of ICS. In a traditional IC class, students had overheads to follow teacher's demonstrations. Students did not complete project implementation because they were unable to follow part of the explanations, and hence they get unmotivated. To solve this problem, an IC mobile device based multimedia teaching methodology, namely m-IC is developed. m-IC allows integration of lecture videos, problems, laboratories and development demonstrations of ICS projects. In this way, m-IC allows students autonomously plan their formation process and receive teacher guidance using a mobile phone. Moreover, smartphones availability makes these devices good candidates to learn IC. To show how students interact with m-IC, a smartphone application is detailed. The successful evaluation of m-IC by around 800 students during four years is presented.This work has been performed in part with the support of the tempus project n0 544490-tempus-1-2013-1-es-tempus-jpcr of the European Union.Hassan Mohamed, H.; Martínez Rubio, JM.; Domínguez Montagud, CP. (2015). m-IC: a Mobile Device based Multimedia Learning Methodology for Industrial Computing. International Journal of Engineering Education. 31(6):1678-1687. http://hdl.handle.net/10251/80682S1678168731

    A Multidisciplinary PBL Robot Control Project in Automation and Electronic Engineering

    Full text link
    This paper presents a multidisciplinary problem-based learning (PBL) project consisting of the development of a robot arm prototype and the implementation of its control system. The project is carried out as part of Industrial Informatics (II), a compulsory third-year course in the Automation and Electronic Engineering (AEE) degree program at the School of Engineering at Universitat Politècnica de València, València, Spain. The robot arm is a low-cost prototype, initially controlled with a joystick. The aim of the project is, first, to design and implement a full control system for the robot, including the necessary circuitry for microcomputer (ARM Cortex)-based control and, second, to pit the designed robot in competition against other students' robots. Incorporation of multidisciplinary PBL required changes in the organization of the course, which features various learning activities and their continuous evaluation; it also required knowledge of five other courses in the AEE program. PBL methodology is compared to a traditional method; the results obtained proved highly satisfactory. Moreover, the PBL robotic experience was highly rated by some 900 students.Hassan Mohamed, H.; Domínguez Montagud, CP.; Martínez Rubio, JM.; Perles Ivars, A.; Capella Hernández, JV.; Albaladejo Meroño, J. (2015). A Multidisciplinary PBL Robot Control Project in Automation and Electronic Engineering. IEEE Transactions on Education. 58(3):167-172. doi:10.1109/TE.2014.2348538S16717258

    Ubiquitous E-Maintenance Proposal Based on the Integration of Mobile Devices and Cloud Computing

    Full text link
    [EN] Most e-maintenance approaches are oriented to big industries and are prohibitive for modest industries. This paper proposes an architecture for e-maintenance that tries to solve this gap. This architecture defines two domains, the floor-shop and the cloud domain. In the floor-shop domain, a mobile device is connected to the system to be maintained by means of a tether-free process interface. On the other hand, the cloud domain provides the resources to improve the maintenance in instrumented manufacturing systems via Internet connection. Also, the mobile device is responsible for joining both domains through its Internet capabilities. The proposed architecture combines mobile devices, cloud computing and Internet connectivity, allowing fresh technicians to supply its lack of expertise, reducing maintenance task time and minimizing the expert technician dependency. The expert now changes his role because his physical presence at the floor-shop domain is not required, being his know-how incorporated to the system. The proposal is human-centric, providing an intuitive usability such as any typical smartphone app. The results show that it is feasible to reduce drastically the economic requirements for deploying complex e-maintenance infrastructures, increasing the quality of the maintenance and enabling the applicability to small factories where maintenance is mostly outsourced. This is translated to higher availability and productivity of the manufacturing plant.This work has been partially supported by Spanish MICINN project TIN2011-28435-C03-01.Capella Hernández, JV.; Perles Ivars, ÁF.; Martínez Rubio, JM.; Hassan Mohamed, H.; Domínguez Montagud, CP.; Albaladejo Meroño, J. (2012). Ubiquitous E-Maintenance Proposal Based on the Integration of Mobile Devices and Cloud Computing. Advanced Science Letters. 18:121-131. doi:10.1166/asl.2012.4875S1211311

    Smartphone-based industrial informatics projects and laboratories

    Full text link
    The use of IT technologies plays an important role in the training of future engineers. In this paper, smartphones and multimedia technologies are proposed as an innovative way to tackle the formation of students, at different levels, in the Industrial Informatics (II) subject of the Industrial Electronics Engineering (IEE) degree. II instructs future Engineers in the design of IT systems to control industrial processes. In the first level, smartphones are used to display a web-based multimedia tool that is implemented to register the lecture explanations regarding the design of II systems, so as it facilitates student to guide him/her self in the learning process. In the second level, the smartphone is proposed as the control system of a medium size industrial process (e.g., water tank). Since II uses a problem-based learning methodology (miniproject) to instruct the design of II systems, for each lecture, laboratory practices are tackled, and the solutions obtained are embedded in the smartphone to control the corresponding part of the miniproject. An application of the Smartphone multimedia tool is presented to show how students interact with the developed system. The successful evaluation of the proposed tools, by more than 900 IEE students during three years, is shown.This work was supported in part by the Universitat Politecnica de Valencia, Valencia, Spain, under Grant 20090513-" Dynamizing the European Convergence Higher Education." Paper no. TII-11-308.Hassan Mohamed, H.; Martínez Rubio, JM.; Perles Ivars, ÁF.; Capella Hernández, JV.; Domínguez Montagud, CP.; Albaladejo Meroño, J. (2013). Smartphone-based industrial informatics projects and laboratories. IEEE Transactions on Industrial Informatics. 9(1):557-566. https://doi.org/10.1109/TII.2012.2185806S5575669

    Using Industrial Computers to Design Advanced Industrial Informatics Systems

    Full text link
    TEMPUS is the European Union (EU) programme that supports the modernisation and reform of Higher Education (HE) and promotes institutional cooperation that involves the EU and EU’s neighboring countries (PC). The PC includes Eastern Europe, Central Asia, the Western Balkans and also the Mediterranean region. The Medis Project belongs to the TEMPUS framework. The Medis project that is described in this article develops in this context.This work was supported by the European Union under Grant “MEDIS” within the program TEMPUS.Busquets Mataix, JV.; Albaladejo Meroño, J.; Perles Ivars, A.; Capella Hernández, JV.; Domínguez Montagud, CP.; Martínez Rubio, JM.; Hassan Mohamed, H. (2015). Using Industrial Computers to Design Advanced Industrial Informatics Systems. En Engineering Experiences in the Design of Advanced Industrial Informatics Systems. Medis-Tempus. 6-11. http://hdl.handle.net/10251/60650S61
    corecore